skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Han, Zhu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 4, 2026
  2. The rapid rise of AI applications has driven datacenters to unprecedented energy demands, which has prompted major tech companies to adopt on-site nuclear power plants (NPPs) alongside grid electricity. While existing research focuses on off-site NPPs in multi-energy systems optimized for investment returns, recent advances in small modular reactors (SMRs), particularly load-following SMRs (LF-SMRs), offer flexible, reliable power tailored for datacenter co-location. However, LF-SMRs are governed by a set of physical constraints, such as ramp rate and stability limits, making them unsuitable as fully dispatchable sources. This paper proposes a novel day-ahead workload scheduling approach that jointly coordinates datacenter operations and LF-SMR output, explicitly modeling these constraints. We develop a two-stage formulation that forecasts carbon-free grid energy from the grid using conformal prediction in the first stage and then optimizes LF-SMR output and workload scheduling via mixed-integer programming in the second stage. Evaluation on real workload traces shows that our method reduces carbon-based energy consumption by up to 43.44% compared to baselines that omit nuclear integration or ignore SMR limitations. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. Free, publicly-accessible full text available August 1, 2026
  4. Free, publicly-accessible full text available May 19, 2026
  5. Free, publicly-accessible full text available March 31, 2026
  6. Free, publicly-accessible full text available May 1, 2026
  7. Free, publicly-accessible full text available March 31, 2026
  8. Free, publicly-accessible full text available March 1, 2026
  9. Free, publicly-accessible full text available February 1, 2026